References
Blangiardo, Marta, and Michela Cameletti. 2015. Spatial and
Spatio-Temporal Bayesian Models with r-INLA. John Wiley & Sons,
Ltd. https://doi.org/https://doi.org/10.1002/9781118950203.
Diggle, Peter J., Paula Moraga, Barry Rowlingson, and Benjamin M.
Taylor. 2013. “Spatial and
Spatio-Temporal
Log-Gaussian Cox
Processes: Extending the
Geostatistical Paradigm.”
Statistical Science 28 (4): 542–63. https://doi.org/10.1214/13-STS441.
Lindgren, Finn, and Håvard Rue. 2015. “Bayesian Spatial
Modelling with R-INLA.” Journal of
Statistical Software 63 (February): 1–25. https://doi.org/10.18637/jss.v063.i19.
Lindgren, Finn, Håvard Rue, and Johan Lindström. 2011. “An
Explicit Link Between Gaussian Fields and Gaussian
Markov Random Fields: The Stochastic Partial Differential
Equation Approach.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 73 (4): 423–98. https://doi.org/10.1111/j.1467-9868.2011.00777.x.
Moraga, Paula. 2023. Spatial Statistics for Data
Science: Theory and Practice with
R. Chapman & Hall/CRC Data Science Series.
Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. “Approximate
Bayesian Inference for Latent Gaussian Models
by Using Integrated Nested Laplace Approximations.”
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 71 (2): 319–92. https://doi.org/10.1111/j.1467-9868.2008.00700.x.
Simpson, Daniel, Håvard Rue, Andrea Riebler, Thiago G. Martins, and
Sigrunn H. Sørbye. 2017. “Penalising Model Component
Complexity: A Principled, Practical
Approach to Constructing Priors.”
Statistical Science 32 (1): 1–28. https://doi.org/10.1214/16-STS576.
Simpson, D., J. B. Illian, F. Lindgren, S. H. Sørbye, and H. Rue. 2016.
“Going Off Grid: Computationally Efficient Inference for
Log-Gaussian Cox Processes.” Biometrika 103
(1): 49–70. https://doi.org/10.1093/biomet/asv064.